Early Solar System instability triggered by dispersal of the gaseous disk

  • Tsiganis, K., Gomes, R., Morbidelli, A. & Levison, HF Origin of the orbital architecture of the giant planets of the Solar System. Nature 435459–461 (2005).

    ADS CAS PubMed Article Google Scholar

  • Morbidelli, A., Tsiganis, K., Crida, A., Levison, HF & Gomes, R. Dynamics of the giant planets of the Solar System in the gaseous protoplanetary disk and their relationship to the current orbital architecture. Astron. J 1341790-1798 (2007).

    ADS Article Google Scholar

  • Batygin, K., Brown, ME & Betts, H. Instability-driven dynamical evolution model of a primordial five-planet outer Solar System. Astrophys. J. Lett. 744L3

    ADS Article Google Scholar

  • Nesvorný, D. Dynamical evolution of the early Solar System. Ann. Rev. Astron. Astrophys. 56137–174 (2018).

    ADS Article Google Scholar

  • Levison, HF, Morbidelli, A., Tsiganis, K., Nesvorný, D. & Gomes, R. Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk. Astron. J 142152 (2011).

    ADS Article Google Scholar

  • Nesvorný, D., Vokrouhlický, D., Bottke, WF & Levison, HF Evidence for very early migration of the Solar System planets from the Patroclus–Menoetius binary Jupiter Trojan. Nat. Astron. 2878–882 (2018).

    ADS Article Google Scholar

  • Mojzsis, SJ, Brasser, R., Kelly, NM, Abramov, O. & Werner, SC Onset of giant planet migration before 4480 million years ago. Astrophys. J 88144 (2009).

    ADS CAS Article Google Scholar

  • Quarles, B. & Kaib, N. Instabilities in the early Solar System due to a self-gravitating disk. Astron. J 15767 (2009).

    ADS PubMed PubMed Central Article Google Scholar

  • de Sousa, RR et al. Dynamical evidence for an early giant planet instability. Icarus 339113605 (2020).

    Article Google Scholar

  • Pierens, A., Raymond, SN, Nesvorny, D. & Morbidelli, A. Outward migration of Jupiter and Saturn in 3:2 or 2:1 resonance in radiative disks: implications for the Grand Tack and Nice models. Astrophys. J. Lett. 795L11

    ADS Article Google Scholar

  • Williams, JP & Cieza, LA Protoplanetary disks and their evolution. Ann. Rev. Astron. Astrophys. 4967–117 (2011).

    ADS Article Google Scholar

  • Jacobson, SA et al. Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact. Nature 50884-87

    ADS CAS PubMed Article Google Scholar

  • Kleine, T. & Walker, RJ Tungsten isotopes in planets. Ann. Rev. Earth Planet. Sci. 45389–417 (2017).

    ADS CAS Article Google Scholar

  • Clement, MS, Kaib, NA, Raymond, SN & Walsh, KJ Mars’ growth stunted by an early giant planet instability. Icarus 311340–356 (2018).

    ADS Article Google Scholar

  • Alexander, R., Pascucci, I., Andrews, S., Armitage, P. & Cieza, L. in Protostars and Planets Vol. VI (eds. Beuther, H. et al.), 475–496 (Univ. of Arizona Press, 2014).

  • Ercolano, B. & Pascucci, I. The dispersal of planet-forming discs: theory confronts observations. R. Soc. Open Sci. 4170114 (2017).

    ADS MathSciNet PubMed PubMed Central Article CAS Google Scholar

  • Masset, FS, Morbidelli, A., Crida, A. & Ferreira, J. Disk surface density transitions as protoplanet traps. Astrophys. J 642478–487 (2006).

    ADS Article Google Scholar

  • Romanova, MM et al. 3D simulations of planet trapping at disc-cavity boundaries. Mon. Not. R. Astron. Soc. 4852666–2680 (2009).

    ADS CAS Article Google Scholar

  • Liu, B., Ormel, CW & Lin, DNC Dynamical rearrangement of super-Earths during disk dispersal. I. Outline of the magnetospheric rebound model. Astron. Astrophys. 601A15 (2017).

    ADS Article Google Scholar

  • Liu, B. & Ormel, CW Dynamical rearrangement of super-Earths during disk dispersal. II. Assessment of the magnetospheric rebound model for planet formation scenarios. Astron. Astrophys. 606A66 (2017).

    ADS Article Google Scholar

  • Gomes, R., Levison, HF, Tsiganis, K. & Morbidelli, A. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435466–469 (2005).

    ADS CAS PubMed Article Google Scholar

  • Nesvorný, D. & Morbidelli, A. Statistical study of the early Solar System’s instability with four, five, and six giant planets. Astron. J 144117

    ADS Article Google Scholar

  • Clement, M. et al. Born eccentric: constraints on Jupiter and Saturn’s pre-instability orbits. Icarus 355114–122 (2021).

    Article Google Scholar

  • Zellner, NEB Cataclysm no more: new views on the timing and delivery of lunar impactors. Origins of Life Evol. Biosphere 47261–280 (2017).

    ADS CAS Article Google Scholar

  • Zahnle, K., Schenk, P., Levison, H. & Dones, L. Cratering rates in the outer Solar System. Icarus 163263-289 (2003).

    ADS Article Google Scholar

  • Singer, KN et al. Impact craters on Pluto and Charon indicate a deficit of small Kuiper belt objects. Science 363955–959 (2009).

    ADS CAS PubMed Article Google Scholar

  • Raymond, SN, Izidoro, A. & Morbidelli, A. In Planetary Astrobiology (eds Meadows, V. et al.), 287–324 (Univ. Arizona Press, 2020).

  • Raymond, SN, Armitage, PJ & Gorelick, N. Planet-planet scattering in planetesimal disks. II. Predictions for outer extrasolar planetary systems. Astrophys. J 711772–795 (2010).

    ADS Article Google Scholar

  • Suzuki, D. et al. The exoplanet mass-ratio function from the MOA-II Survey: discovery of a break and likely peak at a Neptune mass. Astrophys. J 833145 (2016).

    ADS Article CAS Google Scholar

  • Pu, B. & Wu, Y. Spacing of Kepler planets: sculpting by dynamical instability. Astrophys. J 80744 (2017).

    ADS Google Scholar

  • Shakura, NI & Sunyaev, RA Black holes in binary systems. Observational appearance. Astron. Astrophys. 50033–51 (1973).

    ADS Google Scholar

  • Alexander, RD, Clarke, CJ & Pringle, JE Photoevaporation of protoplanetary discs – I. Hydrodynamic models. Mon. Not. R. Astron. Soc. 369216-228 (2006).

    ADS Article Google Scholar

  • Owen, JE, Ercolano, B. & Clarke, CJ Protoplanetary disc evolution and dispersal: the implications of X-ray photoevaporation. Mon. Not. R. Astron. Soc. 41213–25 (2011).

    ADS Article Google Scholar

  • Haisch, J., Karl, E., Lada, EA & Lada, CJ Disk frequencies and lifetimes in young clusters. Astrophys. J. Lett. 553L153–L156 (2001).

    ADS CAS Article Google Scholar

  • Luhman, KL, Espaillat, C., Hartmann, L. & Calvet, N. The disk population of the Taurus star-forming region. Astrophys. J. Suppl. 186111–174 (2010).

    ADS CAS Article Google Scholar

  • Koepferl, CM et al. Disc clearing of young stellar objects: evidence for fast inside-out dispersal. Mon. Not. R. Astron. Soc. 4283327–3354

    ADS Article Google Scholar

  • Hayashi, C. Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor Phys. Suppl. 7035–53 (1981).

    ADS Article Google Scholar

  • Paardekooper, SJ, Baruteau, C., Crida, A. & Kley, W. A torque formula for non-isothermal type I planetary migration – I. Unsaturated horseshoe drag. Mon. Not. R. Astron. Soc. 4011950-1964 (2010).

    ADS Article Google Scholar

  • Liu, B., Zhang, X., Lin, DNC & Aarseth, SJ Migration and growth of protoplanetary embryos. II. Emergence of proto-gas-giant cores versus over Earth progenitors. Astrophys. J 79862 (2015).

    ADS Article Google Scholar

  • Lin, DNC & Papaloizou, J. On the tidal interaction between protoplanets and the protoplanetary disk. III. Orbital migration of planets. Astrophys. J 309846 (1986).

    ADS Article Google Scholar

  • Crida, A., Morbidelli, A. & Masset, F. On the width and shape of gaps in protoplanetary disks. Icarus 181587-604 (2006).

    ADS Article Google Scholar

  • Fernandez, JA & Ip, W.-H. Some dynamical aspects of the accretion of Uranus and Neptune: The exchange of orbital angular momentum with planetesimals. Icarus 58109-120 (1984).

    ADS Article Google Scholar

  • Agnor, CB & Lin, NC On the migration of Jupiter and Saturn: constraints from linear models of secular resonant coupling with the terrestrial planets. Astrophys. J 745143

    ADS Article CAS Google Scholar

  • Kaib, NA & Chambers, JE The fragility of the terrestrial planets during a giant-planet instability. Mon. Not. R. Astron. Soc. 4553561–3569 (2016).

    ADS Article Google Scholar

  • Aarseth, SJ Gravitational N-Body Simulations (Cambridge Univ. Press, 2003).

  • Chambers, J. A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304793–799 (1999).

    ADS Article Google Scholar

  • Laskar, J. Large scale chaos and the spacing of the inner planets. Astron. Astrophys. 317L75–L78 (1997).

    ADS Google Scholar

  • Chambers, JE Making more terrestrial planets. Icarus 152205-224 (2001).

    ADS Article Google Scholar

  • Morbidelli, A., Brasser, R., Tsiganis, K., Gomes, R. & Levison, HF Constructing the secular architecture of the solar system. I. The giant planets. Astron. Astrophys. 5071041-1052 (2009).

    ADS Article Google Scholar

  • Liu, B., Lambrechts, M., Johansen, A. & Liu, F. Super-Earth masses sculpted by pebble isolation around stars of different masses. Astron. Astrophys. 631A7 (2009).

    Article CAS Google Scholar

  • Leave a Comment

    Your email address will not be published. Required fields are marked *